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Medical Image Acquisition

Medical images are acquired through the measurement of biological
quantities:

MRI: distribution of proton spin density (Brown et al. 2014)

CT-scan: distribution of X-ray attenuation coefficients (Herman 2009)

(a) Principles of MRI acquisition
(Lysaker, Lundervold, and Tai 2003)

(b) Principle of computed tomography
(Bauer, Chaves, and Arcoumanis 2012)
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Inverse problem formulation

Inverse problem:

MRI: discrete K-space measurements → Total Variation reconstruction
(Rudin, Osher, and Fatemi 1992) (Abergel and Moisan 2017)

CT-scan: discrete Radon measurements → incomplete frequency space

Analysis of the reconstruction:

the acquisition parameters have an impact on the quality of the
reconstruction

good reconstruction is primordial for medical diagnosis

→ simulations on phantoms (physical and numerical)

Inverse crime:

when the same object is used both for simulation and reconstruction

rasterized image might suffer from aliasing, yielding uninituitively overly
optimistic results

→ search for analytical formulas on continuous phantoms
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Analytical phantoms

(Larry A. Shepp and Logan 1974)

ellipse-based phantom with 11 ellipses

study the impact of the parameters on the reconstruction, from a general
theoretical point of view

apply it to a single regular ellipse

Figure: Shepp & Logan’s phantom (Larry A. Shepp and Logan 1974)
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Analytical phantoms

(L. Shepp et al. 1980)

3D phantom with 17 ellipses

provide their exact coordinates for reproducibility

applications to NMR Computerized Tomography

(a) Front view (b) Side view (c) Top view

(d) Projection along
the line

y = 0.23, z = 0.381

Figure: Improved Shepp & Logan’s phantom (L. Shepp et al. 1980)
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Analytical phantoms

(Koay, Sarlls, and Özarslan 2007)

3D phantom with more intuitive coordinates

analytical formula for the Fourier coefficients

sinusoidal and polynomial functions only, using advanced formulas from
spherical wave functions theory

application to 3D MRI reconstruction with the true Fourier coefficients

Figure: Visualization of several slices of (Koay, Sarlls, and Özarslan 2007)’s phantom
as well as a 3D rendering
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Analytical phantoms

(Guerquin-Kern et al. 2012)

more complex 2D model

ellipses and piecewise-polynomial boundaries (spline, Bézier contours and
polygons)

closed-form Fourier Transform

taking into account the MRI receiving-coil sensitivities (→ parallel MRI
experiments, cf. (Pruessmann et al. 1999))

application to MRI reconstruction with true Fourier coefficients

Figure: Illustration of (Guerquin-Kern et al. 2012)’s phantoms under study.
From Left to right: rectangle, ellipse and proposed one.
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Inverse crime

(Guerquin-Kern et al. 2012)

put in perspective the inverse crime situation in medical image acquisition

show how aliasing renders better in the inverse crime setting

(a) Shepp & Logan’s phantom reconstruction (left: analytical; right: inverse crime)

(b) Brain phantom reconstruction in the analytical vs. inverse crime setting
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Inverse crime

(Abergel and Moisan 2017)

Shannon theory-based Total Variation (TV) reconstruction from sparse
Fourier coefficients

regularization based on the gradient of the Shannon interpolation of the
image

inverse crime situation when generating the k-space coefficients with DFT
due to aliasing

solved by generating a non-aliased version of the phantom by smoothing
and downsampling

(a) STV failing vs TV due to aliasing
(Abergel and Moisan 2017) (b) STV performing better than TV on the

non-aliased version (Abergel and Moisan
2017)
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Contributions

Contributions

homemade 2D ellipse-based phantom

analytical formulas related to CT reconstruction and inverse crime

implementation and analysis of the parameters’ impact on the
reconstruction

Figure: Illustrative summary of the contributions
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Fourier Slice Theorem

Photoelectric effect

dI = −I(x)ρ(x)dx ⇒ I(x) = I0 exp

(
−
∫ x

0

ρ(t)dt

)
ρ(x): local X-ray attenuation coefficient.

Theorem (Fourier slice theorem (Kak and Slaney 2001))

The 1D Fourier transform of a parallel projection of an image f(x, y) at an
angle θ gives a slice of the two-dimensional transform F (u, v), subtending an
angle θ with the u-axis.

Figure: Illustration of the Fourier Slice Theorem (Ripoll, Kettunen, and Herzig 2002) 13/47
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Fourier Slice Theorem

Line equation:
t = x cos θ + y sin θ (1)

Radon transform at angle θ:

Rθ(t) =

∫
θ,t line

ρ(t, s)ds (2)

Fourier Transform:

Sθ(ω) =

∫ −∞

−∞
Rθ(t)e

−iωtdt =

∫ +∞

−∞

[∫
θ,t line

ρ(t, s)ds

]
e−iωtdt (3)

Can be re-written using (1) as:

Sθ(ω) =

∫ +∞

−∞

∫ +∞

−∞
ρ(x, y)e−iω(x cos θ+y sin θ)dxdy (4)

Leads to the Fourier Slice Theorem:

Sθ(ω) = F (ω cos θ, ω sin θ) (5)

→ the knowledge of all the (θ, t) projections makes possible by Inverse
Fourier Theorem to recover the original continuous image.
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Fourier Transform of an ellipse

Simple ellipse:

ρ(a,b)(x, y) =

{
1 if

(
x
a

)2
+
(
y
b

)2 ≤ 1

0 otherwise
(6)

ρ̂(a,b)(kx, ky) =

∫ +∞

−∞

∫ +∞

−∞
ρ(a,b)(x, y)e

−i(kxx+kyy)dxdy (7)

=

∫
( x
a )

2
+( y

b )
2≤1

e−i(kxx+kyy)dxdy (8)(
X =

x

a
;Y =

Y

b

)
(9)

=

∫
X2+Y 2≤1

e−i(kxaX+kybY )abdXdY (10)

(X = r cos(θ);Y = r sin(θ)) (11)

= ab

∫ 1

r=0

r

[∫ 2π

θ=0

e−i(kxar cos(θ)+kybr sin(θ))dθ

]
dr (12)
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Fourier Transform of an ellipse

∫ 2π

θ=0

e−ic cos(θ+φ)dθ = 2πJ0(−c) (13)

c = sgn(kxar)
√

(kxar)
2 + (kybr)

2 = sgn(kx)
√

(kxa)
2 + (kyb)

2r

J0: Bessel function of the first kind of order α = 0

ρ̂(a,b)(kx, ky) = ab

∫ 1

r=0

r

[∫ 2π

θ=0

e−i(kxar cos(θ)+kybr sin(θ))dθ

]
dr (14)

= ab

∫ 1

r=0

r [2πJ0(−c)] dr (15)

ρ̂(a,b)(kx, ky) = 2πab

J1

(√
(kxa)

2 + (kyb)
2

)
√

(kxa)
2 + (kyb)

2
(16)
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More complex ellipse

E(a, b, θ, r0) ellipse of axes (a, b), center r0 = (x0, y0) with a previous rotation
of angle θ.

Mapping: r → R(θ)T (r − r0), with R(θ) =

(
cos(θ) − sin(θ)
sin(θ) cos(θ)

)
.

ρ̂(a,b,θ,r0)(k) =

∫
r∈E(a,b,θ,r0)

e−ir·kdr (17)

=

∫
u∈E(a,b)

e−i(r0+R(θ)u)·kdu (18)

(r = r0 +R(θ)u) (19)

= e−ir0·k
∫
u∈E(a,b)

e−i(R(θ)u)·kdu (20)

= e−ir0·k
∫
u∈E(a,b)

e−iu·(R(θ)⊤k)du (21)

= e−ir0·kρ̂(a,b)(R(θ)⊤k) (22)

= e−ir0·k|diag(a, b)|

(
2π

J1

(
∥diag(a, b)

(
R(θ)⊤k

)
∥2
)

(∥diag(a, b) (R(θ)⊤k) ∥2)

)
(23)

ρ̂(a,b,θ,r0)(k) = 2πab · e−ir0·k J1

(
∥ diag(a, b)R(θ)⊤k∥2

)
(∥diag(a, b)R(θ)⊤k∥2)

(24)
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More complex ellipse

Comments on the FT formula:

non-compact support of Bessel functions → high-frequency components
(expected from the ellipse-background discontinuity)

affine scaling by diag(a, b) → elliptical Airy pattern with inverted axes
with respect to the original ellipse

rotation of angle θ → rotation with the same angle of the ellipse in the
Fourier domain

translation makes the up-to-now real Fourier Transform become complex,
introducing a non piecewise-constant phase

Remarks:

Fourier transform of a disk had actually been implicitly tackled in the
course (Fraunhofer Diffraction)

but enabled me to manipulate Bessel properties which would turn out to
be useful later
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Radon Transform

Line equation:
x cos θ + y sin θ = t (25)

Re-parameterized as: {
x = t cos θ − z sin θ

y = t sin θ + z cos θ
(26)

Rθ(t) =

∫ +∞

−∞
ρ(t cos θ − z sin θ, t sin θ + z cos θ)dz (27)

=

∫ +∞

−∞
1{x(z),y(z)}∈E(a,b)(z)dz (28)

=

∫ +∞

−∞
1{(

x(z)
a

)2
+
(

y(z)
b

)2
≤1

}(z)dz (29)

=

∫ +∞

−∞
1{

( t cos θ−z sin θ
a )

2
+( t sin θ+z cos θ

b )
2≤1

}(z)dz (30)
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Radon Transform

Study the zeros of the polynomial:

P (z) =

(
t cos θ − z sin θ

a

)2

+

(
t sin θ + z cos θ

b

)2

− 1 (31)

∆ = 4
a2 cos2 θ + b2 sin2 θ − t2

a2b2
(32)

Rθ(t) = 2ab

√
a2 cos2 θ + b2 sin2 θ − t2

a2 cos2 θ + b2 sin2 θ
1{t2≤a2 cos2 θ+b2 sin2 θ}(t) (33)

Generalization to more complex ellipses using the following two basic
properties:

1 Rotation: If g(r, θ) = f(r, θ − θ0), then

Rg
θ(t) = Rf

θ−θ0(t) (34)

2 Translation: If g(x, y) = f(x− x0, y − y0), then

Rg
θ(t) = Rf

θ(t− x0 cos θ − y0 sin θ) (35)
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Fourier slice theorem

c :=
√

a2 cos2 θ + b2 sin θ (36)

R̂θ(ω) =
2ab

c

∫ +∞

−∞

√
c2 − t21{t2≤c2}(t)e

−iωtdt (37)

= 4ab

∫ 1

0

√
1− u2 cos(ωcu)dt (38)

= 4ab

∫ π
2

0

√
1− sin2 θ cos(ωc sin θ) cos θdθ (39)

(u = sin θ) (40)

= 2ab

∫ π

0

cos2 θ cos(ωc sin θ)dθ (41)

= abπJ0(ωc) +
ab

2
π (J2(ωc) + J2(−ωc)) (42)

= abπ (J0(ωc) + J2(ωc)) (43)

R̂θ(ω) = 2πab
J1(ωc)

ωc
(44)

R̂θ(ω) = ρ̂(a,b) (ω cos θ, ω sin θ) (45)
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Discrete reconstruction

Real life:

Finite number of sensors for parallel beams

Finite number of angles

→ discrete approximation of the object

Choice of parameterization and notations:
∀n ∈ [[0, N − 1]], θn = nπ

N

∀k ∈ [[0, S − 1]], tk = −1 + 2k
S

u : Ω → R; Ω = [[0, N − 1]]× [[0, S − 1]]

(46)

Procedure

1 1D DFT on the discrete sinogram, angle by angle

2 Linear interpolation on the resulting discrete radial FT

3 Inverse FT on the interpolated Fourier spectrum

Reconstruction parameters1: {
S = 512

N = 25
(47)

1a typical couple of parameters is (S = 512, N = 1000), cf. Upstate medical university – CT
reconstruction
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Discrete reconstruction

Simple open uniform ellipse considered in the experiments:

x0 = 0

y0 = 0

aext = 0.6

bext = 0.9

aint = 0.54

bint = 0.81

θ = 0

(48)

(a) Uniform open ellipse (b) Analytical FT (log scale) (c) Analytical sinogram

Figure: Illustration of the simple uniform elliptical phantom under study in this
subsection, as well as its analytical Fourier Transform and sinogram
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Discrete Fourier Transform of the discrete Radon Transform

1D Discrete Fourier Transform at each angle θn:

ûn(p) =

S−1∑
k=0

e−i 2πpk
S Rnπ

N

(
−1 +

2k

S

)
(49)

ûn(p) =
2ab

a2 cos2(nπ
N )+b2 sin2(nπ

N )

∑S−1
k=0

√
a2 cos2

(
nπ
N

)
+ b2 sin2

(
nπ
N

)
−
(
−1 + 2k

S

)2
e−i 2πpk

S

(a) DFT of the sinogram

(b) Cartesian visualization of the DFT

Figure: Illustration of the DFT of the discrete Radon Transform of the open ellipse
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Interpolation of the radial Discrete Fourier Transform

Figure: Schema of the radial Fourier Transform interpolation
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Interpolation of the radial Discrete Fourier Transform

ûinterp(ω cos θ, ω sin θ) =
(
1− θ−θn

θn+1−θn

) [(
1− ω−ωp

ωp+1−ωp

)
ûn(p) +

(
ω−ωp

ωp+1−ωp

)
ûn(p+ 1)

]
+
(

θ−θn
θn+1−θn

) [(
1− ω−ωp

ωp+1−ωp

)
ûn+1(p) +

(
ω−ωp

ωp+1−ωp

)
ûn+1(p+ 1)

]
ω ∈ [ωp, ωp+1[ ⇐⇒ ω ∈

[
−1 + 2p

S
,−1 + 2(p+1)

S

[
⇐⇒ p =

⌊
(ω+1)S

2

⌋
=⇒ ωp = −1 + 2

S

⌊
(ω+1)S

2

⌋
θ ∈ [θn, θn+1[ ⇐⇒ θ ∈

[
nπ
N

, (n+1)π
N

[
⇐⇒ n =

⌊
θN
π

⌋
=⇒ θn =

⌊ θN
π ⌋π
N

ûinterp(ω cos θ, ω sin θ) =

(
1− θ−

⌊ θN
π ⌋π
N

π
N

)[(
1−

ω+1− 2
S

⌊
(ω+1)S

2

⌋
2
S

)
û⌊ θN

π ⌋
(⌊

(ω+1)S
2

⌋)
+

(
ω+1− 2

S

⌊
(ω+1)S

2

⌋
2
S

)
û⌊ θN

π ⌋
(⌊

(ω+1)S
2

⌋
+ 1
)]

+

(
θ−

⌊ θN
π ⌋π
N

π
N

)[(
1−

ω+1− 2
S

⌊
(ω+1)S

2

⌋
2
S

)
û⌊ θN

π ⌋+1

(⌊
(ω+1)S

2

⌋)
+

(
ω+1− 2

S

⌊
(ω+1)S

2

⌋
2
S

)
û⌊ θN

π ⌋+1

(⌊
(ω+1)S

2

⌋
+ 1
)]

Figure: Interpolation of the radial Discrete Fourier Transform of the elliptical
phantom’s analytical sinogram
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Inverse Fourier Transform of the interpolated Fourier spectrum

u(x, y) =

∫ +∞

−∞

∫ +∞

−∞
û(kx, ky)e

−i(kx,ky)·(x,y)dkxdky

=

∫ +∞

−∞

∫ π

0

û(ω cos θ, ω sin θ)e−iω[x cos θ+y sin θ])ωdωdθ

u(x, y) =
∫ +∞
−∞

∫ π

0
e−iω[x cos θ+y sin θ])

(
1− θ−

⌊ θN
π ⌋π
N

π
N

)[(
1−

ω+1− 2
S

⌊
(ω+1)S

2

⌋
2
S

)
û⌊ θN

π ⌋
(⌊

(ω+1)S
2

⌋)
+

(
ω+1− 2

S

⌊
(ω+1)S

2

⌋
2
S

)
û⌊ θN

π ⌋
(⌊

(ω+1)S
2

⌋
+ 1
)]

+e−iω[x cos θ+y sin θ])

(
θ−

⌊ θN
π ⌋π
N

π
N

)[(
1−

ω+1− 2
S

⌊
(ω+1)S

2

⌋
2
S

)
û⌊ θN

π ⌋+1

(⌊
(ω+1)S

2

⌋)
+

(
ω+1− 2

S

⌊
(ω+1)S

2

⌋
2
S

)
û⌊ θN

π ⌋+1

(⌊
(ω+1)S

2

⌋
+ 1
)]

ωdωdθ

Figure: CT reconstruction of the open ellipse, with N = 25; S = 512
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Reconstruction for several angular discretizations

(a) N=10 (b) N=25

(c) N=50 (d) N=100

Figure: Impact of the angular discretization on the reconstruction
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Inverse Crime

Discrete ellipse:

Id(k, l) =

1 if
(

−1+ 2k
L

a

)2
+
(

−1+ 2l
L

b

)2
≤ 1

0 otherwise
(50)

Interpolation:

Ic(x, y) =
(
1− x−k

2
L

)(
1− y−l

2
L

)
Id(k, l) + x−k

2
L

(
1− y−l

2
L

)
Id(k + 1, l) + y−l

2
L

(
1− x−k

2
L

)
Id(k, l + 1) + x−k

2
L

y−l
2
L

Id(k + 1, l + 1) (51)

Rotation:

Ic ◦R(θ)−1(x, y) = Ic(x cos θ + y sin θ,−x sin θ + y cos θ) (52)

Sampling:

Id ◦R(θ)−1(k, l) = Ic ◦R(θ)−1

(
−1 +

2k

L
,−1 +

2l

L

)
(53)
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Inverse Crime

Radon Transform:

Rθ(k) =

L∑
l=1

Id ◦R(θ)−1(k, l) (54)

Rθ(k) =

L∑
l=1

Ic ◦R(θ)−1

(
−1 +

2k

L
,−1 +

2l

L

)
(55)

Rθ(k) =
∑L

l=1 I
c
((
−1 + 2k

L

)
cos θ +

(
−1 + 2l

L

)
sin θ,

(
1− 2k

L

)
sin θ +

(
−1 + 2l

L

)
cos θ

)
(56)

Figure: Comparison of the sinograms obtained with or without committing an inverse
crime
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Inverse Crime

(a) Reconstruction without inverse
crime

(b) Reconstruction with inverse
crime

Figure: Comparison between the elliptical phantom reconstruction within the regular
and inverse crime frameworks
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Tiny rotated and translated ellipse



x0 = −0.15

y0 = −0.2

a = 0.1

b = 0.12

θ = π
6

(57)

(a) Rotated and translated
ellipse (b) Analytical FT (log scale) (c) Analytical sinogram

Figure: Illustration of the uniform rotated and translated elliptical phantom under
study, as well as its analytical Fourier Transform and sinogram
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Tiny rotated and translated ellipse

(a) Sinogram FT

(b) Sinogram FT radial

(c) Sinogram FT radial
interpolated

(d) Reconstruction

Figure: CT reconstruction of the uniform rotated and translated elliptical phantom
under study
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Tiny rotated and translated ellipse

(a) N=10 (b) N=25

(c) N=50 (d) N=100

Figure: Impact of the angular discretization on the reconstruction
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Tiny rotated and translated ellipse

Figure: Comparison of the sinograms obtained with or without committing an inverse
crime

(a) Reconstruction without inverse crime (b) Reconstruction with inverse crime

Figure: Comparison between the rotated and translated elliptical phantom
reconstruction within the regular and inverse crime frameworks 39/47
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Complex phantom as a combination of ellipses

ρ x0 y0 a b θ

5 0 0 0.6 0.9 0
-5 0 0 0.54 0.81 0
2 -0.15 -0.2 0.1 0.12 π

6

1 -0.2 -0.2 0.23 0.25 - π
20

1 -0.2 0 0.2 0.6 - π
20

1 0.25 0.05 0.2 0.6 + π
20

Table: Parameters for the full elliptical phantom

(a) Rotated and translated
ellipse (b) Analytical FT (log scale) (c) Analytical sinogram

Figure: Illustration of the full phantom under study, as well as its analytical Fourier
Transform and sinogram 40/47
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Complex phantom as a combination of ellipses

(a) Sinogram FT

(b) Sinogram FT radial

(c) Sinogram FT radial
interpolated

(d) Reconstruction

Figure: CT reconstruction of the full phantom under study
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Complex phantom as a combination of ellipses

(a) N=10 (b) N=25

(c) N=50 (d) N=100

Figure: Impact of the angular discretization on the reconstruction
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Complex phantom as a combination of ellipses

Figure: Comparison of the sinograms obtained with or without committing an inverse
crime for the full phantom

(a) Reconstruction without inverse crime (b) Reconstruction with inverse crime

Figure: Comparison between the full phantom reconstruction within the regular and
inverse crime frameworks 43/47
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Conclusion

Contributions

homemade 2D ellipse-based phantom

analytical formulas related to CT reconstruction and inverse crime

implementation and analysis of the parameters’ impact on the
reconstruction

Limits

naive and primitive work for a domain > 100 years old

made simplified hypotheses (linear interpolation, CT reconstruction
method per se) to get an easier formulation

Perspectives

theoretical convergence analysis of the discretization parameters

non-uniform densities (didn’t see those ideas in my literature review)

irregular discretization to enhance particular structures?

extract knowledge from our ”elliptical Fourier slice Theorem” to design a
better reconstruction algorithm for ellipses only?

towards a new Shannon ”sinogram sampling” theorem?
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Thank you for your attention
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